
Event Notifications among Distributed Objects in Dealing Room System

Su Su Aung, Yin Ko Latt
University of Computer Studies, Magway

susuaung87@gmail.com

Abstract

In the online business world, the customer-vendor
relationship is no longer mearly buy and sells [7]. As
there are various kinds of stock to be chosen on the
market, it is important for the customer to be able to
choose the best with reasonable price. This paper
presents about the implementation of dealing room
system which can provide the current market prices
of stocks to user and can inform the user immediately
when the stock prices change. There are three
components in dealing room system. They are
information provider, server and user. Information
provider is an authorized person who can access the
database that stored the information of stock on
server. Information provider can insert new stock,
delete the existing stock and update the prices of
stocks. When the user enters to the system, user can
find out the current prices of stocks and the date of
the latest update. Dealing room can also let users to
register their interested stocks with the server in
order to get the notification when the price of user
interested stock is changed or deleted. In this system,
server stores the stock information and send
notification message to user when information
provider updates the database.

1. Introduction

Most of the programming languages today are
object-oriented. With the widespread utilization of
object technologies, it has become more and more
important to employ the object-oriented paradigm in
distributed environment [6]. The distributed object
system is simple, in that distributed objects are easy
to use and to implement. And the system it self is
easily to extensible and maintainable. Thus
distributed object-oriented platforms have become
important components for parallel and distributed
computing and service frameworks. Among
distributed object-oriented software, RMI is one of
the key methods for performing parallel and
distributed computing in Java environments. The
java system provides a basic communication
mechanism called sockets. Although sockets are
flexible and sufficient for general communication,

the use of sockets requires the client and server using
this medium to engage in some application-level
protocol to encode and decode messages for
exchange. Design of such protocols is difficult and
can be error-prone. An alternative to sockets is
Remote Procedure Call (RPC). RPC systems abstract
the communication interface to the level of a
procedure call. RPC, however, does not translate
well into distributed object systems where
communication between program-level objects
residing in different address spaces is needed. In
order to match the semantics of object invocation,
distributed object systems require remote method
invocation or RMI. In RMI there are remote objects
whose methods can be accessed from another
address space, potentially on different machine.

A dealing room system is implemented based on
the concept of distributed event-based programming.
In a dealing room system, distributed objects reside
on different machines can communicate by event
subscribing and notification. The communication
between objects in dealing room system is carried
out by mean of java remote method invocation. One
object can send notification to another object when a
particular event occurs.

Events are cause and notifications are effect. The
definition of event and notification are as follow.

Event: An event is a detectable condition that can
trigger a notification.

Notification: A notification is an event-triggered
signal sent to a run time defined recipient [8].

2. Related work

Julia Myint[4] proposed an event notification
system using agent-based matchmaking services
which capable of monitoring the availability of
services, maintaining an updated file of all
information on services use. In this system,
matchmaker also matches users’ interests and
appropriate information automatically, and sends
latest information to relevant users.

Peter R.Pietzuch[5] have introduced Hermes, a
novel event-based distributed middleware
architecture that follows a type- and attribute-based
publish/subscribe model. It focus on the notion of an

event type and supports features commonly known
from object-oriented languages like type hierarchies
and supertype subscriptions.

Ludger Fiege, Gero Muhl, and Felix C. Gartner
[3] have presented about the modular event based
system in which the modular design and
implementation of an event system is presented
which supports scopes and event mappings

3. Characteristics of distributed system

 The characteristics of distributed system are
Multiple Computers: More than one physical
computer, each consisting of CPUs, local memory,
and possibly stable storage, and I/O paths to connect
it with the environment.
Interconnections: Mechanisms for communicating
with other nodes via a network.
Shared State: If a subset of nodes cooperates to
provide a service, a shared state is maintained by
these nodes. The shared state is distributed or
replicated among the participants [2].

4. Distributed objects

Distributed system requires entities which reside
in different address spaces potentially on different
machines to communicate. Distributed object means
that objects reside in separate address spaces and
whose methods can be access on remote address
space potentially on different machines. The remote
method call is issue in an address space separated
from the address space where the target object
resides. The code issuing the call is refers to as
client. The target object is referred to as server object
or remote object. The set of method which
implement one of the server object’s interfaces is
sometimes designated as a service that this object
provides. The process in which server object is
located is referred to as server. Most importantly a
method invocation on a remote object has the same
syntax as a method invocation on a local object.

In the dealing room system, there are distributed
objects whose methods can be invoked from another
java virtual machine. They are called remote objects.

The remote objects in the dealing room system are
1. LoginClientModule
2. StockControlClientModule
3. ServerModule

5. Remote object requirements

 The remote object must implements the remote
interface. The remote interface is the interface that
declares the methods of the remote object which can
be invoked from another remote object.

 1. A remote object’s interface must be written as
extending the java.rmi.Remote interface. This serves
to mark remote objects for the RMI system. No
methods are introduced by java.rmi.Remote.
 2. A remote object’s interface must be public.
 3. A remote object’s interface should extend
java.rmi.server. UnicastRemoteObject. This serve to
replace several object class methods so that they
work properly in a distributed environment.
Essentially, precautions are taken so that each client
receives the same result when calling certain remote
object methods.
 4. All methods must be declared as throwing
java.rmi.RemoteException. This could be seen as an
RMI drawback - existing Java interfaces must be
modified in order to function in a distributed
environment.
 5. Register the object using the java.rmi.Naming
interface (implemented in the object’s code). Note
the RMI registry must be running before the object
can be launched to register itself.
 6. Once the object’s interface is defined and an
implementation is derived, the object is compiled
into bytecode using the javac compiler. A client and
server stub is then created from the bytecode using
the RMI stub compiler, rmic. The client stub serves
to provide hooks into the object serialization
subsystem in RMI for marshaling method
parameters.
 7. The RMI registry must be running on the
server. The RMI registry is launched with the
command rmiregistry [PORT NUMBER].

The remote interfaces in the dealing room system
are IClientModule and IServerModule. The
LoginClientModule and StockControlClientModule
implement the IClientModule and ServerModule
implements IServerModule.

6. Events in the dealing room

Distributed event-based system extends the local
event model by allowing multiple objects at different
location to be notified of events taking place at an
object. In a dealing room system, many events
occurred between the interaction of client, server and
information provider. For the occurring of a
particular event, an appropriate notification is issue
to relevant remote object.

A software system is said to be event-based if its
parts interact primarily using event notifications. In
this context, a part is anything containing code, such
as a module of functions, an object, or a component
made up by classes and objects. Notifications are
basically signals sent from one part to another, in
response to an event [8].

An event based system is made up of a collection
of independent parts that interacts using event
notification. A system that was designed based on

event is easier to build, test and maintain them a
traditional one. The larger the system, the greater the
benefits of event based approach. Event based
system also tries to reduce the coupling in a system
as much as possible.

6.1. Characteristics of event-based system

 There are two main characteristics in distributed
event-based system. They are –
Heterogeneous – When event notification are used
as a means of communication between distributed
object, components in a distributed system that were
not designed to interoperate can be made to work
together. All that is required is that event generating
objects publish the types of events they offer, and
that other objects subscribe to events and provide an
interface for receiving notifications.
Asynchronous – Notification are sent
asynchronously by event generating objects to all the
objects that have subscribe to them to prevent
publisher needing to synchronize with subscriber [1].

6.2. Events between client and server

The events that occur between the client and
server are

1. Register
2. Login
3. Registering the interested stock
4. Canceling the registration of interested stock
Register event occurs when the new user registers

to the dealing room.
Login event occurs when the registered user login

to the dealing room.
Registering the interested stock occurs when the

users select their interested stock which were
provided by the dealing room and register with the
server in order to get the notification about the
changes on the price of stock.

Canceling the registration occurs when the user
cancels the registration of interested stock because
the user may not wish to get the notification in the
future.

6.3. Events between information provider
and server

 The types of events that occur between the
interaction of information provider and server are

1. Login
2. Insert new
3. Delete existing stock
4. Update price
5. Delete the user registration

 Login event occurs when the information
provider login to dealing room system.

 Insert new event occurs when the information
provider inserts new stock to the database on server.
 Delete event occurs when the information
provider deletes the stock from the database.
 Update price event occurs when the information
provider changes the price of stock on server with
the latest price.
 Delete the user registration occurs when the
information provider deletes the registration of user
interested stock on server.

7. Notifications in dealing room system

The main concept of Dealing Room System is to
notify the user when a particular event occurs at the
server. Notifications act a communication between
components in this system. Client can also notify
server after choosing their interested stock. In the
dealing room system, the process of sending
notification is handled by the server. Notifications
are sent based on the occurrences of event happening
at the client site and information provider site.
Notifications in this system are displayed as a
message box with the information of the type of
event occurs.

There are two types of notification that the
information provider can get about the occurrence of
event in the client site. The events that cause these
notifications are registering the interested stock and
canceling the registration of interested stock. When
the users select their interested stock and register for
the event of any update occurring on that stock,
server stores the user name and stock in database and
sends the notification to information provider site. If
so, information provider can see which user is
interested on which stock and can send notification if
any changes occur on that stock. When the user may
not longer interested on that stock, user can cancel
the registration. In such event, server deletes the
registration in database and sends notification to
information provider.

Client will also receive the notifications of the
occurrences of events at the information provider.
Whenever the information provider inserts new
stock, updates the price of stock and deletes the stock
that the user is interested, server sends the
notification to the user with the information of event.

8. Java RMI in dealing room system

Remote method invocation (RMI) allows objects

to invoke methods on remote objects. The calling
objects can user the same syntax as for the local
invocations. The remote method invocation (RMI)
features of java enable a program running on one
machine to call methods of another object created by
another program running on a remote machine. The
second object created by the program running on the

remote system is called a remote object. The program
which creates the remote object whose methods is to
be invoked is called a server. Similarly the program
which invokes the remote objects methods is called
the client. With RMI, programmers can perform
distributed computing in a networked environment.
The essence of object oriented programming is to
create objects which will perform a specific task in a
way transparent to other objects.

8.1 RMI between distributed objects

 This system consists of separated programs which
are located on different machines. They are server,
client and the information provider. The remote
objects are resided on these three sites. These sites
interconnect by message sending which is actually an
invocation of method on remote object on another
site. To allow such type of communication, each site
must create remote objects, makes references to
those objects accessible and then waits for invocation
of method on that objects.
 The RMI model provides a distributed object
application that the server and the client use to
communicate and pass information between each
other. A distributed object application has to handle
the following properties.
Locate remote object: The system has to obtain
references to remote objects. This can be done in two
ways. Either by using RMI’s naming facility, the
rmiregistry, or by passing and returning remote
objects.
Communicate with remote objects: The
programmer does not have to handle communication
between the remote objects since this is handled by
the RMI system. The remote communication looks
like an ordinary method invocation for the
programmer.
Lode class bytecodes for objects that are passes as
parameters or return values: All mechanisms for
loading an object’s code and transmitting data is
provided by the RMI system.

Figure 1.RMI architecture

8.2 Communication step in RMI

 The communication steps in RMI are as follow.

1. Caller calls a local procedure implemented
by the stub.

2. Stub marshals call type and input arguments
into a request message.

3. Client stub sends the message over the
network to the server.

4. Server skeleton receives the request
message from the network.

5. Skeleton unpacks call type from the request
message and looks up the procedure on the
called object.

6. Skeleton unmarshalls procedure arguments.
7. Skeleton executes the procedure on the

called object.
8. Called object performs a computation and

returns the result.
9. Skeleton packs the output arguments into a

response message.
10. Skeleton sends the message over the

network back to the client.
11. Client stub receives the response message

from the network.
12. Stub unpacks output arguments from the

message.
13. Stub passes output arguments to the caller

[9].

9. System flow diagrams

View the stock
list table

Start

login

Select the interested
stock and register
with the server

Cancel the
interest stock
registration

Server
database

Input new user
registration

If new
user

Notification
message to
information
provider

End

Notification
message to
information
provider

RMI
server

Stub Skeleton

bind
call

return

Look up

RMI
client

Registry

Figure 2.System flow of client and server sites

 In this system, client and server are located on
different machines. If the client login to system, the
user name and password of client is validated with
the information stored at server. If the login
information is valid, server returns the correct
information and client can view the stock list which
stored at the server database. If the particular event
occurs at the client site, server will send notification
message to information provider which resides on
other machine.

Figure 3.System flow of information provider site

 Information provider must login to the system
with correct name and password. Information
provider is authorized to access the information
stored at the server site. When the provider performs
changes on stock in database, server will send
notification to appropriate users who register
interested on that stock.

10. Implementation of dealing room

Start

Login

Password
valid ?

Insert, delete, update the
stock and delete the user
interested registration

Invalid
password

Server
database

Notification
message to user

End

Figure 4.Stock control form

 Information provider can add new stock, change
stock price and delete the existing stock. To insert
new stock, the provider must type the id number,
name of stock, date and price of stock. To delete the
stock, provider must choose id of stock. By pressing
“Delete by id” button, the stock with selected id will
be delete from the list. To update the existing stock,
provider must choose the id of stock, enter new
information and press “Update stocks” button. The
stock with selected id will change. The “Update by
interested stock” and “Delete by interested stock”
buttons are used to update the stock which is
registered by the user who interested on that stock.

Figure 5.Stock list table

 When the user login to the dealing room, the
dealing room will show stock table. User can see the
stock prices and the latest updates of stock. If the
user wants the notification about changes in a
particular stock, user can choose the particular stock
id. The server will save user name and stock name
when “stock register” button was pressed. Then user
will get the notification about any updates on that
stock. If user does not want notifications anymore,
user can cancel the stock registration.

11. Conclusion

 Event oriented model was introduced in
distributed system since 1970s [8]. Many application
and operating system such as Microsoft Windows
use graphical user interface based on event. Dealing
room system was designed based on the aspect of
event and notification. This approach is simple and
easy to develop by using Java Remote Method
Invocation (RMI). This system and provide the
present price of stock on market. When the changes
on price occur, it can inform to user immediately by
sending notification massage. Because it was based
on the event and notification paradigm, user does not
need to couple with the system and the
communication between the system and users is
asynchronous.

12. Limitations

 The connection between components in the
system is peer to peer connection. Server marks each
user with their IP address. So that each client
machine in the system can be used by a particular
user.

13. References

[1] G.Coulouris, J.Dollimore and T.Kindberge, Distributed
system Concept and Design Third Edition. Pearson
Education Press, 2001.

[2] F.Jahanian, Introduction to Distributed Systems.
http://www.eecs.umich.edu/~farnam.

[3] Ludger Fiege, Gero Muhl, and Felix C. Gartner,
Modular Event-Based Systems, Darmstadt University of
Technology D-64283 Darmstadt, Germany.
[4] Julia Myint, Event Notification System Using Agent-
Based Matchmaking Services.

[5] Peter R.Pietzuch, Hermes: A Distributed Event-Based
Middleware Architecture.

[6] F.Plasil and M.Stal, An architectural view of
distributed objects and components in CORBA, Java RMI
and COM/DCOM, Springer-Verlag, 1998.

[7] T.Sun& A.´E Trudel, An implemented e-commerce
shopping system which makes personal recommendations,
Jodrey School of Computer Science Acadia University
Wolfville, Nova Scotia, B0P 1X0 Canada.

[8]T.Faison and F.De Gasperis, Event-Based
programming: Taking events to the limit, ISBN-13: 978-1-
59059-643-2, 2006.

[9]http://www.wikipedia.com/Distributed object
communication. PDF

	1. Introduction
	2. Related work
	3. Characteristics of distributed system
	
	4. Distributed objects
	5. Remote object requirements
	6. Events in the dealing room
	
	6.2. Events between client and server
	7. Notifications in dealing room system
	8. Java RMI in dealing room system
	
	
	
	
	10. Implementation of dealing room
	
	
	

